Posts Tagged ‘Sagitario A*’

10 mil imágenes formaron histórica FOTO de Sagitario A*, al centro de la Vía Láctea

martes, mayo 24th, 2022

Un experto del Telescopio Horizonte de Eventos (EHT) señaló que realizaron “unas diez mil imágenes, cada una de ellas ligeramente distinta, pero todas muy parecidas”.

Por Noemí G. Gómez

Madrid, 24 may (EFE).- El agujero negro del corazón de la Vía Láctea es un objeto extremadamente pequeño en el universo y capturar su imagen es como lograr la de una rosquilla en la superficie de la Luna. Para ello se necesita un telescopio del tamaño de la Tierra, que recoja millones de datos y los traduzca luego en miles de fotografías.

En concreto en unas diez mil. Ese es el número de imágenes que los científicos del Telescopio Horizonte de Sucesos (EHT, en sus siglas en inglés) necesitaron para obtener la histórica fotografía de Sagitario A*, presentada el pasado 12 de mayo en diversas ruedas de prensa.

“Realizamos unas diez mil imágenes, cada una de ellas ligeramente distinta, pero todas muy parecidas”, relata a Efe José Luis Gómez, miembro del Consejo Científico del EHT y líder de grupo de este proyecto en el Instituto de Astrofísica de Andalucía (IAA-CSIC), al sur de España.

La imagen final es un promedio de todas ellas y suma las características comunes, señala el astrónomo.

OCHO OBSERVATORIOS UNIDOS POR SUPERODENADORES

Sagitario A* está a unos 27 mil años luz de la Tierra y para captar su imagen se creó una red de ocho observatorios de radio -uno en España-, anteriormente construidos con otros fines y que combinados forman un telescopio virtual del tamaño de la Tierra; “había que ser creativos”, dice Gómez, quien explica que esa virtualidad gigante se logra gracias a superordenadores que “unen” los observatorios y procesan los datos.

Las observaciones del EHT de Sagitario A* que luego se transformaron en imagen corresponden al 7 de abril de 2017, diez horas continuadas de recogida de datos. Lo que vino después son años de estudio, algoritmos, escudriñamiento de datos, comparaciones y descartes.

Y el resultado, recuerda Gómez, constituye una prueba abrumadora de que el objeto, ese anillo que se observa con su sombra en el centro, es sin duda un agujero negro, un lugar del espacio de donde nada pueda escapar, ni siquiera la luz.

El objeto en sí no se puede ver porque está completamente oscuro, pero sí el gas brillante y el material -partículas elementales como electrones, protones o neutrones- que lo rodean. La imagen lo que capta es la luz curvada por la fuerza gravitatoria del agujero negro, cuya masa es cuatro millones de veces la del Sol, detalla Gómez.

Mapa global que muestra los observatorios de ondas de radio que forman la red del EHT utilizada para obtener imágenes del agujero negro central de la Vía Láctea, Sagitario A *. Resaltados en azul, los tres telescopios agregados a la colaboración después de 2018. Foto: ESO/M. Kornmesser/EFE

“Vemos un centro oscuro delineado por un anillo que es ese plasma que da vueltas. El anillo delimita la zona negra de la que no puede escapar la luz, lo que se conoce como el horizonte de sucesos”.

LA SEGUNDA FOTOGRAFÍA DEL EHT

La imagen de Sagitario o Sgr A* llegó después de que los mismos científicos publicaran, en 2019, la primera fotografía de un agujero negro, M87*, situado en el centro de la galaxia distante Messier 87; los dos tienen un aspecto bastante similar a pesar de que el del centro de la Vía Láctea es más de mil veces más pequeño.

Y justamente su menor tamaño es lo que complicó la instantánea. Gómez recuerda que el material que viaja alrededor de un agujero negro, ya sea Sgr A* o M87*, se mueve a la misma velocidad, casi tan rápido como la luz, pero como el de la Vía Láctea es más pequeño la rotación de este material es más corta.

Es decir, mientras que el gas tarda entre días y semanas en orbitar M87* -este agujero negro es más grande que todo el Sistema Solar-, en Sgr A* completa la órbita en cuestión de minutos.

Por eso, añade Gómez, el brillo y la configuración del gas alrededor de Sagitario A* cambiaba continuamente mientras el EHT lo observaba. Como dijo en su día el científico Chi-kwan Chan, es como intentar sacar una foto nítida de un cachorro que da vueltas persiguiendo su cola.

José Luis Gómez, miembro del Consejo Científico del EHT y líder de grupo de este proyecto en el Instituto de Astrofísica de Andalucía (IAA-CSIC). Imagen facilitada por el propio investigador. Foto: EFE

Para contrarrestar este movimiento, el equipo de astrónomos tuvo que introducir nuevos algoritmos, apunta el investigador del IAA, quien señala que este “ajetreo” es lo que explica precisamente que esta imagen sea un poco más borrosa que la de M87* y que no sean capaces “de saber con exactitud cuál es la zona del anillo que más brilla”.

CONCLUSIONES MÁS ALLÁ DE LA IMAGEN

Pero lo que sí está claro -añade- es que es un anillo que corresponde a un agujero negro y con estas dos imágenes han corroborado “una de las grandes predicciones de la Teoría de la Relatividad de Einstein”. “Los agujeros negros son los objetos más extravagantes del universo, son una puerta hacia fuera del universo, pero al mismo tiempo son lo más simples que te puedas imaginar”.

La teoría dice que estos no tienen características distintivas -más allá de las diferencias de material que los rodea y el nuestro está poco “hambriento”- y eso se ha comprobado, también que el horizonte de sucesos es el mismo.

Gómez apunta una sorpresa: Sagitario A* no rota de manera perpendicular al plano galáctico -el plano donde están la mayor parte de las estrellas-, sino que está como inclinado.

Esta fue de hecho una de las primeras preguntas de la comunidad científica en la presentación de los datos. Ahora, indica, hay que hacer estudios para buscar las razones de esta y otras cuestiones.

Gómez, quien asegura que se le siguen poniendo “los pelos de punta” al ver las imágenes, declara que el próximo reto es hacer una película y nuevas fotos de otros agujeros negros, para lo que ya están buscando candidatos.

¿Cómo participó la UNAM en la primera FOTO del agujero negro en nuestra Vía Láctea?

viernes, mayo 13th, 2022

La revelación de la primera fotografía de Sagitario A* ha causado revuelo en el mundo de la ciencia. Los resultados formaron parte del esfuerzo de instituciones a nivel internacional, entre las que se encuentra la UNAM. ¿Qué es un agujero negro y cuál es la importancia de este hallazgo? Expertos lo explican.

Ciudad de México/Madrid, 13 de mayo (SinEmbargo/The Conversation).- La publicación de la primera fotografía de Sagitario A*, el agujero negro que vive en el centro de nuestra Vía Láctea, marca un hito histórico en el que investigadores de la Universidad Nacional Autónoma de México (UNAM) fueron partícipes junto a 80 instituciones de todo el mundo.

Nuestro país formó parte de esta colaboración internacional con el trabajo del Gran Telescopio Milimétrico Alfonso Serrano (GTM), uno de los equipos más grandes de la red y que se ubica en el volcán Sierra Negra, en Puebla, del cual forman parte investigadores de la UNAM y el Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), informa Gaceta UNAM en un comunicado.

Raymond Loinard y Gisela Ortiz León, del Instituto de Astronomía, se encuentran entre los expertos de talla mundial de la institución que colaboraron con el proyecto.

“El hallazgo del EHT es una imagen del centro de nuestra galaxia. Hace tres años publicamos una imagen del centro de la galaxia de M87, que está a 50 millones de años luz. Este resultado nuevo ya es del centro de nuestra propia galaxia, a 25 mil años luz, mucho más cercano”, dijo Loinard.

[youtube mB3JE2ix9y8]

Durante una sola noche de observación, la imagen del agujero negro cambia mucho, ya que se trata de un fenómeno muy dinámico, explicó. Lo anterior se debe a que Sagitario A* es mil veces menos masivo que M87 -el primer agujero negro del que se difundió una imagen en 2019-, lo que a su vez ocasiona que los efectos dinámicos que se dan en meses o años en M87 se den en horas o días en Sagitario A*.

Entre los resultados más importantes de este hallazgo se encuentra la constatación de la Teoría General de la Relatividad de Einstein, que indica que las características observacionales de estos objetos no cambian, a excepción de su tamaño, conforme va modificándose su masa. Las imágenes de M87 y Sagitario A* soportan lo anterior.

Además, los investigadores han logrado conocer la masa del agujero negro de nuestra Vía Láctea, de 4 millones de masas solares, así como su distancia.

“A partir de la Relatividad General podemos predecir exactamente cuál es el diámetro que esperamos para este anillo, sin ambigüedades. La imagen del EHT (Telescopio Horizonte de Sucesos) confirma perfectamente que esa predicción teórica se cumple”, dijo Loinard.

“Con esto podemos descartar diversas alternativas a la Relatividad General, la teoría que tenemos para describir la gravitación o cómo es que los objetos masivos se comportan. Esta nueva imagen deja poco espacio para estas otras teorías, descarta muchas de ellas, porque el tamaño del anillo que se midió es exactamente lo que esperábamos”.

[youtube -1m7NbkQpDk]

La presentación de esta fotografía, dada conocer de manera simultánea alrededor del mundo, se llevó a cabo en México con la participación de Elena Álvarez-Buylla Roces, directora general del Consejo Nacional de Ciencia y Tecnología (CONACYT); Edmundo Gutiérrez Domínguez, director general del INAOE; Luis Alberto Zapata González, director del Instituto de Radioastronomía y Astrofísica (IRyA) de la UNAM; David Hughes, director del GTM e investigador del INAOE; Laurent Raymond Loinard, investigador del IRyA; Gisela Ortiz León, investigadora del IA de la UNAM; y Alejandro Cruz Osorio, investigador de la Universidad de Frankfurt.

¿QUÉ ES UN AGUJERO NEGRO Y POR QUÉ ES TAN IMPORTANTE SU HALLAZGO EN NUESTRA VÍA LÁCTEA?

Se ha hecho esperar, pero ya tenemos la primera imagen del agujero negro supermasivo que habita el centro de nuestra propia galaxia: Sagitario A*.

Se trata de un monstruo con una masa equivalente a cuatro millones de soles situado a 26 mil años luz de nuestro planeta. Con un diámetro 17 veces mayor que el de nuestro Sol es, sin embargo, mil veces menor que el agujero negro supermasivo en la galaxia M87, el primero en ser fotografiado en 2019.

Imagen en radiofrecuencia del agujero negro supermasivo Sagitario A* (esquina superior derecha) situado en el centro de la Vía Láctea. Foto: NASA

Dado que los agujeros negros no emiten luz, la zona oscura en el centro de la imagen corresponde a la sombra de Sagitario A*, la región donde la luz no puede escapar (delimitada por el horizonte de sucesos).

[youtube Zml0dZCjaFw]

La región brillante alrededor del agujero negro es la señal de radiofrecuencia emitida por el gas caliente que orbita el agujero negro a velocidades cercanas a la de la luz.

Esta nueva hazaña ha sido protagonizada por el mismo consorcio mundial de radiotelescopios (denominado EHT por sus siglas en inglés, Event Horizon Telescope) que fotografió al agujero negro supermasivo en M87. Hasta la fecha, está constituida por once radio observatorios perfectamente sincronizados para detectar las radiofrecuencias asociadas a las emisiones de agujeros negros.

Red global de radio observatorios que conforman el EHT. Foto vía The Conversation

Esta novedosa fotografía de Sagitario A* es el resultado de la composición de numerosas imágenes de este objeto (tras miles de horas de observación) y tratadas mediante tecnología computacional avanzada.

En otras palabras, es la mejor imagen del agujero negro del centro de la Vía Láctea que se ajusta a los datos recogidos por el EHT (dentro de las leyes que marca la Teoría de la Relatividad General de Einstein).

La imagen superior de Sagitario A* ha sido obtenida mediante un promedio de las cuatro imágenes inferiores. Foto vía The Conversation

En relación a las manchas brillantes en la imagen de Sagitario A*, estas se deben a un aumento aparente en la emisión cuando la radiación apunta directamente hacia nosotros (el conocido como efecto Doppler para ondas electromagnéticas).

Pero, antes de abordar por qué ha sido tan relevante este nuevo descubrimiento, veamos a continuación cómo se forma un agujero negro y cómo pueden alcanzar el tamaño de nuestro compañero galáctico, Sagitario A*.

FORMACIÓN DE UN AGUJERO NEGRO

Un agujero negro es un objeto astronómico con una atracción gravitatoria excepcional. Ni siquiera la luz puede escapar de él.

Los agujeros negros de tipo estelar se forman al final de la vida de una estrella masiva. Cuando ésta agota todo su combustible, su núcleo (que es el lugar donde producen las reacciones termonucleares que generan su energía) colapsa sobre si mismo, comprimiendo la estrella muerta hacia una región de tamaño cero y densidad infinita: la singularidad.

Otras estrellas de menor masa no formarán un agujero negro al final de su vida, evolucionando hacia enanas blancas o estrellas de neutrones.

Etapas de la evolución estelar. Sólo las estrellas más masivas se convertirán en agujeros negros. Foto vía The Conversation

La singularidad constituye el centro del agujero negro y se encuentra escondida por la superficie que conforma el horizonte de sucesos (cuyo radio aproximado, para agujeros negros estáticos, se denomina radio de Schwarschild).

Sin embargo, no sólo se pueden constituir agujeros negros por evolución estelar. El físico británico Stephen Hawking propuso la existencia de los llamados agujeros negros primordiales.

Creados en los primeros instantes del Big Bang, estos objetos pueden tener una masa menor incluso que la de un asteroide. Estos agujeros negros diminutos (al contrario que sus compañeros más masivos) pierden masa debido al fenómeno llamado radiación de Hawking y, finalmente, desaparecen.

Recreación de un agujero negro primordial de tamaño atómico. Foto vía The Conversation

¿Y CUÁL ES EL ORIGEN DE LOS AGUJEROS NEGROS SUPERMASIVOS?

Unas teorías sugieren que se formaron por una lenta absorción de materia a partir de un agujero negro de tamaño estelar. Sin embargo, este proceso es extremadamente lento para constituir un gigante como Sagitario A* en un tiempo relativamente corto.

Otras teorías alternativas sugieren que estos agujeros negros supermasivos se originaron a partir del colapso gravitatorio de enormes cantidades de gas interestelar (además de tragar las estrellas más pequeñas a su alrededor).

En la siguiente animación se describe con detalle este proceso de absorción de una estrella por un agujero negro.

[youtube 85tdoDt1Qh0]

RELEVANCIA DE ESTE NUEVO HALLAZGO

Volviendo a nuestro agujero negro supermasivo Sagitario A*, quizá uno de los aspectos más significativos de este hallazgo sea, precisamente, su proximidad a nosotros, al encontrarse en nuestra propia galaxia: la Vía Láctea.

Posición relativa entre nuestro Sistema Solar y el centro de nuestra galaxia. Foto vía The Conversation

Aunque se conocía su existencia desde finales del siglo pasado (debido a la poderosa atracción gravitatoria que ejerce sobre estrellas de su entorno), no ha sido fácil obtener una imagen del mismo.

Entre otras razones por su posición en el centro de nuestra galaxia (posiblemente situado en un entorno con alta concentración de polvo y gas interestelar) así como su reducido tamaño (en comparación con M87).

Con este nueva imagen de Sagitario A* se pone aún más de manifiesto la existencia de un agujero negro supermasivo en el centro de nuestra galaxia (confirmando, de nuevo, la Relatividad General de Einstein como uno de los mayores logros intelectuales del siglo XX).

Comparativa entre los agujeros negros supermasivos M87 (izquierda) y Sagitario A* (derecha). Foto vía The Conversation

Se abre de nuevo otra ventana para seguir observando aquellos objetos del Universo que, hasta hace bien poco, eran invisibles a nuestros ojos.

-Con información de Oscar del Barco Novillo. Profesor asociado en el área de Óptica, Universidad de Murcia.

Expertos celebran la primera FOTO de Sagitario A*, que cambia percepción del universo

jueves, mayo 12th, 2022

La revolucionaria fotografía de Sagitario A* es resultado del trabajo de 300 investigadores de 80 instituciones de todo el mundo.

Madrid, 12 may (EFE).- Un anillo -o más bien una rosquilla- anaranjado pero no perfectamente esférico y con tres puntos más fuertes de luz; los científicos tienen claro que la histórica imagen que hoy desvelaron del agujero negro de la Vía Láctea (Sagitario A*) va a transformar la concepción del Universo.

Una idea compartida por los científicos que hoy intervinieron en Madrid en un acto institucional y rueda de prensa posterior para dar a conocer y poner en valor el revolucionario éxito que logró el Telescopio Horizonte de Sucesos (EHT, por sus siglas en inglés).

Tras escuchar la exposición de los resultados y de contemplar las primeras imágenes públicas del agujero negro de la Vía Láctea que se emitieron desde Múnich -donde se encuentra la sede del Observatorio Europeo Austral (ESO)-, algunos de los científicos que intervinieron subrayaron la trascendencia y la relevancia histórica de la noticia en la sede principal del Consejo Superior de Investigaciones Científicas, en Madrid.

Descrito como un “monstruo” gravitacional del que nada, ni siquiera la luz, puede escapar, los científicos que participaron hoy en Madrid lanzaron, entre bromas, un mensaje tranquilizador: “El agujero está lo suficientemente lejos como para no suponer ningún peligro para la Tierra”.

La histórica imagen desvelada hoy se suma a la que se publicó hace ahora tres años de un agujero negro supermasivo -con un tamaño ocho veces superior al del Sistema Solar-, pero en aquel caso el agujero se encontraba fuera de la Vía Láctea, en el centro de otra galaxia (la Messier 87).

En el acto de Madrid, simultáneo al que se celebró en otros lugares del mundo, intervinieron los investigadores Rocco Lico, Ilje Cho, Guang-Yao Zhao, Thalia Traianou y Antonio Fuentes, del IAA-CSIC; Iván Martí Vidal, de la Universidad de Valencia; y Miguel Sánchez Portal, director del Instituto de Radioastronomía Milimétrica.

“Histórica” y “revolucionaria” fueron los adjetivos más repetidos para referirse a la imagen de “Sagrario A*”, un agujero, explicaron, que sería cuatro millones de veces más masivo que el Sol, y que va a contribuir a desentrañar muchos de los secretos que esconden estos gigantes gravitacionales.

Es, afirmaron los investigadores, una evidencia científica abrumadora de que el objeto es realmente un agujero negro, y aseguraron que las propiedades del mismo concuerda a la perfección con la Teoría de la Relatividad General que formuló Albert Einstein hace un siglo.

La imagen fue obtenida gracias a una red de telescopios (localizados en México, Chile, Hawai, Arizona y España) que sumados funcionan como un telescopio virtual del tamaño de la propia Tierra, y los resultados principales del trabajo se publicaron hoy en una edición especial de The Astrophysical Journal Letters.

[youtube DvtHKl9GxNs]

Realización de la imagen del agujero negro en el centro de la Vía Láctea. Foto: Event Horizon Telescope

Los investigadores explicaron que el agujero negro se encuentra a unos 27 mil años luz de la Tierra y detallaron que la imagen se obtuvo recopilando datos durante muchas horas seguidas -como una larguísima exposición con una cámara fotográfica-.

En total, el trabajo suma la aportación de unos 300 investigadores de 80 instituciones de todo el mundo, los datos se escudriñaron durante los últimos cinco años, y en el proceso se emplearon varios centros de supercomputación para combinar y analizar los datos.

Los estudios anteriores ya habían demostrado que en el centro de la Vía Láctea había un objeto extremadamente grande y compacto con una masa cuatro millones de veces superior al Sol, pero esta es la primera evidencia visual de que el objeto es un agujero negro.

Tras la primera imagen fija del agujero, los científicos convocados hoy en Madrid apuntan ya un nuevo reto, el de conseguir una imagen en movimiento (un video) y celebraron en ese sentido la campaña que se realizó en el mes de marzo y que incorporó más telescopios e importantes actualizaciones tecnológicas que permitirán -auguran- conseguir imágenes aún más impresionantes.

¿Por qué es histórica la primera FOTO del agujero negro de nuestra la Vía Láctea?

jueves, mayo 12th, 2022

La imagen de hoy proporciona la primera evidencia visual directa de que este objeto ubicado en el centro de nuestra Vía Láctea es, en efecto, un agujero negro supermasivo.

Madrid, 12 may (EFE).- Los rumores desde hace días estaban ahí y hoy las expectativas se cumplieron: científicos del Telescopio Horizonte de Eventos desvelaron la primera imagen de Sagitario A*, el agujero negro supermasivo del corazón de nuestra galaxia, la Vía Láctea, lo que constituye una evidencia “abrumadora” de su existencia.

Emocionante, histórico, extraordinario, revolucionario o novedoso son algunos de los calificativos utilizados por los investigadores responsables de este hallazgo, que se dio a conocer en varias ruedas de prensa simultáneas en distintos países, entre ellos España.

Este resultado proporciona “pruebas abrumadoras” de que el objeto es sin duda un agujero negro, un lugar del espacio de donde nada puede escapar, ni siquiera la luz, y aporta valiosas pistas sobre el funcionamiento de tales gigantes, que supuestamente ocupan el centro de la mayoría de las galaxias.

Anteriormente, la comunidad científica ya había observado estrellas orbitando alrededor de algo invisible, compacto y muy masivo en el centro de la Vía Láctea.

Estas órbitas permitían postular que este objeto -conocido como Sagitario A* o SgrA*– era un agujero negro, y la imagen de hoy proporciona la primera evidencia visual directa de ello, según los científicos del EHT (el horizonte de sucesos es el borde del agujero negro, el límite más allá del cual es imposible ver nada, ni escapar).

[youtube DvtHKl9GxNs]

Aunque no se puede ver el agujero negro en sí, porque está completamente oscuro, el gas brillante que lo rodea tiene una firma reveladora: una región central oscura (llamada “sombra”) rodeada por una estructura brillante en forma de anillo.

La nueva imagen, en la que se observa un anillo no perfectamente esférico amarillo y naranja, con tres puntos más brillantes, capta la luz curvada por la fuerza gravitatoria del agujero negro, cuya masa es cuatro millones de veces la del Sol.

“Es un momento importantísimo, es el siguiente nivel. Misión cumplida, sí, pero hay mucho trabajo aún por hacer”, señaló J. Anton Zensus en la rueda de prensa organizada por el Observatorio Europeo Austral (ESO) en Garching, cerca de Múnich (Alemania).

Para obtener las imágenes de este agujero a unos 27 mil años luz de la Tierra, se creó una red de ocho observatorios de radio, anteriormente construidos con otros fines, combinados para formar un único telescopio virtual “del tamaño de la Tierra” -uno de ellos está en Sierra Nevada, Granada (sur de España)-.

El EHT lo observó durante varias noches, recopilando datos durante muchas horas seguidas, de forma similar a como una cámara fotográfica tradicional haría una imagen con un tiempo de exposición largo.

DIFERENCIAS ENTRE LAS DOS IMÁGENES DE AGUJEROS NEGROS

Este descubrimiento llega después de que la colaboración EHT publicara, en 2019, la primera imagen de un agujero negro, conocido como M87* y situado en el centro de la galaxia distante Messier 87.

Presentación de la primera imagen del agujero negro -un espacio del que nada, ni siquiera la luz, puede escapar- en el centro de nuestra galaxia, la Vía Láctea, este jueves en la sede del CSIC, en Madrid. Foto: Fernando Alvarado, EFE

Los dos tienen un aspecto bastante similar, a pesar de que el del centro de nuestra galaxia es más de mil veces más pequeño y ligero que M87*.

“Tenemos dos tipos de galaxias completamente diferentes y dos masas de agujeros negros muy distintas, pero cerca del borde de estos agujeros negros los dos son asombrosamente similares”, apunta Sera Markoff, vicepresidenta del Consejo Científico del EHT.

Esto demostraría que la relatividad general de Albert Einstein es la que gobierna estos objetos a pequeña escala, y cualquier diferencia que veamos a escalas mayores ha de venir por diferencias en el material que rodea a los agujeros negros.

“Lo sorprendente es lo bien que coincide el tamaño del anillo con las predicciones de la teoría de la relatividad general de Einstein”, coincide Geoffrey Bower, del Instituto de Astronomía y Astrofísica de la Academia Sinica de Taipéi.

SOSPECHAS DESDE LOS 70

La comunidad astronómica sabe de la existencia de la brillante y densa fuente de radio del centro de la Vía Láctea (en la dirección de la constelación de Sagitario) desde la década de 1970.

Midiendo las órbitas de varias estrellas cercanas a nuestro centro galáctico durante un periodo de 30 años, los equipos de Reinhard Genzel (director del Instituto Max-Planck de Física Extraterrestre) y Andrea M. Ghez (de la Universidad de California, Los Ángeles) fueron capaces de concluir que la explicación más probable para un objeto de esta masa y densidad es un agujero negro supermasivo. Sus investigaciones les valieron el Premio Nobel de Física 2020.

Antxon Alberdi, director del Astrofísico de Andalucía acompañado por investigadores del proyecto Telescopio Horizonte de Sucesos (EHT por sus siglas en inglés), durante la presentación de la primera imagen del agujero negro, en Madrid. Foto: Fernando Alvarado, EFE

Estos estudios previos habían demostrado que en el centro de nuestra galaxia reside un objeto extremadamente compacto con una masa cuatro millones de veces mayor que nuestro Sol, recuerda José Luis Gómez, miembro del Consejo Científico del EHT y líder del grupo del EHT en el Instituto de Astrofísica de Andalucía (IAA-CSIC, sur de España).

“Ahora, gracias al EHT, hemos podido obtener la primera confirmación visual de que este objeto es, casi con toda seguridad, un agujero negro con propiedades que concuerdan perfectamente con la relatividad general de Einstein”.

Este trabajo ha sido bastante más difícil que el de M87*, a pesar de que Sgr A* está mucho más cerca.

El científico del EHT Chi-kwan Chan detalla que el gas que hay en las proximidades de los agujeros negros se mueve a la misma velocidad -casi tan rápido como la luz- alrededor de Sgr A* y M87*.

Pero mientras que el gas tarda entre días y semanas en orbitar alrededor de M87*, en Sgr A* completa una órbita en cuestión de minutos; el primero es mucho mayor que el segundo.

Esto significa que el brillo y la configuración del gas que había alrededor de Sgr A* estaba cambiando rápidamente mientras la colaboración EHT lo observaba; “Un poco como tratar de obtener una foto nítida de un cachorro que da vueltas persiguiendo su cola”.

Los investigadores tuvieron que desarrollar nuevas y sofisticadas herramientas que tuvieran en cuenta el movimiento del gas alrededor de Sgr A*.

[youtube -OZWsQEKsNE]

Mientras que M87* era un objetivo más fácil y estable, ya que casi todas las imágenes tenían el mismo aspecto, este no fue el caso de Sagitario A*. La imagen hoy conocida es un promedio de las diferentes obtenidas, revelando por fin el gigante que acecha en el centro de nuestra galaxia.

El trabajo fue posible gracias a más de 300 investigadores de más de 80 instituciones que juntos forman la Colaboración EHT y que, además de complejas herramientas, utilizaron superordenadores para combinar y analizar datos. Los resultados se publican hoy en una edición especial de The Astrophysical Journal Letters.

En Madrid, varios de los científicos involucrados coincidieron al señalar que la histórica imagen del agujero negro va a cambiar la concepción del universo.

Descrito como un “monstruo” gravitacional del que nada, ni siquiera la luz, puede escapar, los investigadores, en el acto convocado en el CSIC, han lanzado, entre bromas, un mensaje tranquilizador: “El agujero está lo suficientemente lejos como para no suponer ningún peligro para la Tierra”.

FOTOS: Revelan la primera imagen del agujero negro en el centro de nuestra Vía Láctea

jueves, mayo 12th, 2022

El hallazgo, logrado a partir de un gran trabajo internacional, confirma la Teoría General de la Relatividad de Einstein y se trata de la primera prueba visual directa del agujero negro supermasivo en el centro de nuestra galaxia.

Madrid, 12 may (EFE).- Científicos del Telescopio Horizonte de Eventos (EHT, por sus siglas en inglés) han desvelado este jueves la primera imagen del agujero negro -un espacio del que nada, ni siquiera la luz, puede escapar- en el centro de nuestra galaxia, la Vía Láctea.

En varias ruedas de prensa simultáneas celebradas en distintos países, los investigadores han dado a conocer la histórica fotografía de este agujero negro supermasivo, llamado Sagitario A*; en ella se observa un anillo no perfectamente esférico amarillo y naranja, con tres puntos más brillantes.

“Es fascinante, realmente nuevo y extraordinario”, ha resumido el director general del Observatorio Europeo Austral (ESO), el español Xavier Barcons, en la rueda de prensa organizada por este organismo en su sede de Garching, cerca de Múnich (Alemania).

Este resultado constituye “una evidencia abrumadora” de que el objeto es realmente un agujero negro y aporta valiosas pistas sobre el funcionamiento de estos gigantes que, se cree, residen en el centro de la mayoría de las galaxias.

La imagen ha sido obtenida por un equipo de investigación global, la Colaboración del Telescopio Horizonte de Sucesos, utilizando observaciones con una red mundial de ocho radiotelescopios, que funciona como un telescopio virtual del tamaño de la Tierra.

Los resultados del equipo EHT se publican hoy en una edición especial de The Astrophysical Journal Letters.

La esperada imagen muestra “al fin el aspecto real del enorme objeto que se encuentra en el centro de nuestra galaxia”, señala el ESO.

Realización de la imagen del agujero negro en el centro de la Vía Láctea. Foto: Telescopio Horizonte de Eventos

Anteriormente, la comunidad científica ya había observado estrellas orbitando alrededor de algo invisible, compacto y muy masivo en el centro de la Vía Láctea.

Estas órbitas permitían postular que este objeto -conocido como Sagitario A*- era un agujero negro, y la imagen de hoy proporciona la primera evidencia visual directa de ello, aseguran los científicos.

Aunque no podemos ver el agujero negro en sí, porque está completamente oscuro, el gas brillante que lo rodea tiene una firma reveladora: una región central oscura (llamada “sombra”) rodeada por una estructura brillante en forma de anillo.

La nueva imagen capta la luz curvada por la fuerza gravitatoria del agujero negro, cuya masa es cuatro millones de veces la de nuestro Sol.

[youtube -1m7NbkQpDk]

“Lo sorprendente es lo bien que coincide el tamaño del anillo con las predicciones de la teoría de la relatividad general de Einstein“, ha declarado el científico del proyecto EHT Geoffrey Bower, del Instituto de Astronomía y Astrofísica de la Academia Sinica de Taipéi.

“Estudios previos, galardonados con el Premio Nobel de Física en 2020, habían demostrado que en el centro de nuestra galaxia reside un objeto extremadamente compacto con una masa cuatro millones de veces mayor que nuestro Sol”, según José Luis Gómez, miembro del Consejo Científico del EHT y líder del grupo del EHT en el Instituto de Astrofísica de Andalucía (IAA-CSIC).

“Ahora, gracias al EHT, hemos podido obtener la primera confirmación visual de que este objeto es, casi con toda seguridad, un agujero negro con propiedades que concuerdan perfectamente con la Teoría de la Relatividad General de Einstein”, afirma.

La histórica imagen desvelada hoy se suma a la que se publicó hace poco más de tres años por parte del mismo equipo internacional de científicos de un agujero negro supermasivo -con un tamaño ocho veces superior al del Sistema Solar-, pero en aquel caso el objeto se encontraba fuera de la Vía Láctea, en el centro de otra galaxia (la Messier 87).

Aunque no podemos ver el agujero negro en sí, porque está completamente oscuro, el gas brillante que lo rodea tiene una firma reveladora. Foto: NASA/CXC/SAO; IR: NASA/HST/STScI. Inset/EHT

Un agujero negro es un lugar del espacio de donde nada puede escapar, ni siquiera la luz. La fuerza de su gravedad es tan fuerte que ni siquiera la luz puede escapar de su atracción y si la luz, que es lo que más rápido viaja en nuestro universo no puede salir, entonces nada podrá hacerlo.

Albert Einstein formuló la teoría que los predice, aunque él nunca llegó a entenderlos ni aceptarlos, Karl Schwarzschild fue el primero en hallar una solución de las ecuaciones de Einstein (si bien él murió antes de que esto se entendiese), y Stephen Hawking describió, entre otros, sus propiedades.